About
Intro Page
The Wien (E x B) Filter
Developed by E. Behringer
This set of exercises guides the students to compute and analyze the
behavior of a charged particle in a spatial region with mutually
perpendicular electric and magnetic fields. It requires the student
to determine the Cartesian components of hte forces acting on the
particle and to obtain the corresponding equations of motion. The
solutions to these equations are obtained through numerical
integation, and the capstone exercise is the simulation of the E ⃗ × B ⃗ E style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">→ style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">× style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">B style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">→ style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> (Wien)
filter.
Subject Area
Electricity & Magnetism
Levels
First Year and Beyond the First Year
Available Implementation
Python
Learning Objectives
Students who complete this set of exercises will be able to:
generate equations predicting the Cartesian components of
force acting on the charged particle and generate the
equations of motion for the particle (Exercise 1 );
calculate particle trajectories by solving the equations of
motion (Exercise 2 );
produce two-dimensional and three-dimensional plots of the
trajectories (Exercise 2 ); and
simulate the operation of an E ⃗ × B ⃗ E style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">→ style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">× style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">B style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">→ style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> (Wien)
filter (Exercise 3) and determine the range of particle
velocities transmitted by the filter, and how these are
affected by the geometry of the filter (Exercise 4 ).
Time to Complete
120 min
Exercise 2
EXERCISE 2: COMPUTING THE TRAJECTORY
Solve the equations of motion to obtain the trajectory of the Li+ style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">+ style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> ion
from Exercise 1 while it traverses the field region from z = 0 z style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">= style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">0 style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> to z = L = 0.25 z style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">= style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">L style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">= style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal">0.25 style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> m.
(a) On separate graphs, plot x x style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> , y y style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> ,
and z z style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> style="padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; border-top-style: none; border-top-width: 0px; border-right-style: none; border-right-width: 0px; border-bottom-style: none; border-bottom-width: 0px; border-left-style: none; border-left-width: 0px; display: inline; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; line-height: normal"> versus
time.
(b) Plot the trajectory in space. What does the trajectory of the ion
look like? What did you expect (Exercise 1)? What happens if you reduce
the initial kinetic energy of the ion by a factor of 100? A factor of
10,000?
(c) What is the kinetic energy of the ion at the end of its trajectory?
How does it compare to its initial energy?
ExB_Filter_Exercise_2.py with Bug Fix
#
# ExB_Filter_Exercise_2.py
#
# This file is used to numerically integrate
# the second order linear differential equations
# that describe the trajectory of a charged particle through
# an E x B velocity filter.
#
# Here, it is assumed that the axis of the filter
# is aligned with the z-axis, that the magnetic field
# is along the +x-direction, and that the electric field
# is along the -y-direction.
#
# The numerical integration is done using the built-in
# routine odeint.
#
# By:
# Ernest R. Behringer
# Department of Physics and Astronomy
# Eastern Michigan University
# Ypsilanti, MI 48197
# (734) 487-8799 (Office)
# This email address is being protected from spambots. You need JavaScript enabled to view it.
#
# Last updated:
#
# 20160624 ERB
#
from pylab import figure,plot,xlim,xlabel,ylim,ylabel,grid,title,show
from numpy import sqrt,array,arange
from scipy.integrate import odeint
#
# Initialize parameter values
#
q = 1.60e-19 # particle charge [C]
m = 7.0*1.67e-27 # particle mass [kg]
KE_eV = 100.0 # particle kinetic energy [eV]
Ex = 0.0 # Ex = electric field in the +x direction [N/C]
Ey = -105.0 # Ey = electric field in the +y direction [N/C]
Ez = 0.0 # Ez = electric field in the +z direction [N/C]
Bx = 0.002 # Bx = magnetic field in the +x direction [T]
By = 0.0 # By = magnetic field in the +x direction [T]
Bz = 0.0 # Bz = magnetic field in the +x direction [T]
L = 0.25 # L = length of the crossed field region [mm]
u = [1.0,1.0,100.0]/sqrt(10002.0) # direction of the velocity vector
# Derived quantities
qoverm = q/m # charge to mass ratio [C/kg]
KE = KE_eV*1.602e-19 # particle kinetic energy [J]
vmag = sqrt(2.0*KE/m) # particle velocity magnitude [m/s]
v1x = vmag*u[0] # v1x = x-component of the initial velocity [m/s]
v1y = vmag*u[1] # v1y = y-component of the initial velocity [m/s]
v1z = vmag*u[2] # v1z = z-component of the initial velocity [m/s]
vzpass = -Ey/Bx # vzpass is the z-velocity required for no deflection
[m/s]
#
# Over what time interval do we integrate?
#
tmax = L/v1z;
#
# Here are the derivatives of position and velocity
def derivs(r,t):
# derivatives of position components
xp = r[1]
yp = r[3]
zp = r[5]
dx = xp
dy = yp
dz = zp
# derivatives of velocity components
ddx = qoverm*(Ex + yp*Bz - zp*By)
ddy = qoverm*(Ey + zp*Bx - xp*Bz)
ddz = qoverm*(Ez + xp*By - yp*Bx)
return array([dx,ddx,dy,ddy,dz,ddz],float)
# Specify initial conditions
x0 = 0.0 # initial x-coordinate of the charged particle [m]
dxdt0 = v1x # initial x-velocity of the charged particle [m/s]
y0 = 0.0 # initial y-coordinate of the charged particle [m]
dydt0 = v1y # initial y-velocity of the charged particle [m/s]
z0 = 0.0 # initial z-coordinate of the charged particle [m]
dzdt0 = v1z # initial z-velocity of the charged particle [m/s]
r0 = array([x0,dxdt0,y0,dydt0,z0,dzdt0],float)
# Set up the time interval
t1 = 0.0 # initial time
t2 = tmax # final scaled time
N = 1000 # number of time steps
h = (t2-t1)/N # time step size
# The array of time values at which to store the solution
tpoints = arange(t1,t2,h)
# Calculate the solution using odeint
r = odeint(derivs,r0,tpoints)
#
# Extract the 1D matrices of position values
#
position_x = r[:,0]
xmin = min(position_x)
xmax = max(position_x)
position_y = r[:,2]
ymin = min(position_y)
ymax = max(position_y)
position_z = r[:,4]
zmin = min(position_z)
zmax = max(position_z)
# Calculate the final velocity
vx = r[:,1]
vxf = vx[N-1]
vy = r[:,3]
vyf = vy[N-1]
vz = r[:,5]
vzf = vz[N-1]
vf = sqrt(vxf*vxf+vyf+vyf+vzf*vzf)
KEf_eV = 0.5*m*vf*vf/1.60e-19
print("The initial x-velocity = %.3e"%v1x," m/s.") ##Frem: Added brackets
print("The initial x-velocity = %.3e"%vx[0]," m/s.")##Added brackets
print("The pass velocity = %.3e"%vzpass," m/s.")##Added brackets
print("The magnitude of the initial velocity = %.3e"%vmag,"
m/s.")##Added brackets
print("The magnitude of the final velocity = %.3e"%vf," m/s.")##Added
brackets
print("The initial kinetic energy = %.3e"%KE_eV," eV.")##Added brackets
print("The final kinetic energy = %.3e"%KEf_eV," eV.")##Added brackets
# start a new figure
figure()
# Plot the x-position versus time
plot(tpoints,position_x,"b-")
xlim(t1,t2)
ylim(xmin,xmax)
xlabel("Time \(t\) [s]",fontsize=16)
ylabel("\(x\) [m]",fontsize=16)
grid(True)
title('Wien filter: \(v = \)%.2e m, length \(L = \)%.2f m'%(vmag,L))
show()
# start a new figure
figure()
# Plot the y-position versus time
plot(tpoints,position_y,"b-")
xlim(t1,t2)
ylim(ymin,ymax)
xlabel("Time \(t\) [s]",fontsize=16)
ylabel("\(y\) [m]",fontsize=16)
grid(True)
title('Wien filter: \(v = \)%.2e m/s, length \(L = \)%.2f m'%(vmag,L))
show()
# start a new figure
figure()
# Plot the z-position versus time
plot(tpoints,position_z,"b-")
xlim(t1,t2)
ylim(zmin,zmax)
xlabel("Time \(t\) [s]",fontsize=16)
ylabel("\(z\) [m]",fontsize=16)
grid(True)
title('Wien filter: \(v = \)%.2e m/s, length \(L = \)%.2f m'%(vmag,L))
show()
# start a new figure
plot_trajectory = figure()
# Plot the trajectory in 3D
ax = plot_trajectory.gca(projection='3d')
ax.plot(position_x,position_y,position_z,"b-")
ax.set_xlabel("\(x\) [m]")
ax.set_ylabel("\(y\) [m]")
ax.set_zlabel("\(z\) [m]")
ax.set_title("Wien filter: \(v = \)%.2e m/s, length \(L\) = %s"%(vmag,L))
grid(True)
show()
Translations
Code
Language
Translator
Run
Credits
Fremont Teng; Loo Kang Wee; based on codes by E. Behringer
Sample Learning Goals
[text]
For Teachers
[text]
Research
[text]
Video
[text]
Version:
https://www.compadre.org/PICUP/exercises/Exercise.cfm?A=ExB_Filter&S=6
http://weelookang.blogspot.com/2018/06/wien-e-x-b-filter-exercise-123-and-4.html
Other Resources
[text]
end faq
{accordionfaq faqid=accordion4 faqclass="lightnessfaq defaulticon headerbackground headerborder contentbackground contentborder round5"}