Breadcrumbs

 

 

Download ModelDownload SourceembedLaunch Website ES WebEJS

About

Intro Page

This is a pendulum in 3D.

Let the angle between the pendulum and the vertical line is \(\theta\) and the angular velocity \(\omega=\frac{d\theta}{dt}\)

And the angle of the pendulum (projected to x-y plane) with the x-axis is  \(\phi\), and it's angular velocity \(\dot\phi=\frac{d\phi}{dt}\)

The [url=http://en.wikipedia.org/wiki/Lagrangian_mechanics]lagrange equation[/url] for the system is \(L=T-V = \tfrac{1}{2}m (L\dot\theta)^2+\tfrac{1}{2}m (L\sin\theta \dot{\phi})^2- (-mgL\cos\theta)\)

The equation of the motion is

\(\ddot\theta=\sin\theta\cos\theta\dot{\phi}^2-\frac{g}{L}\sin\theta\)  ...... from \(\frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}})-\frac{\partial L}{\partial \theta}=0\)

and

\( m L^2 \sin\theta^2 \dot{\phi}=const\) Angular momentum is conserved. ...... from \(\frac{d}{dt}(\frac{\partial L}{\partial \dot{\phi}})-\frac{\partial L}{\partial \phi}=0\)

And the following is the simulation of such a system:

When the checkbox ([b]circular loop[/b]) is checked, \(\omega=0\). and \(\dot{\phi}= \sqrt{\frac{g}{L\cos\theta}}\) It is a circular motion.

The vertical component tangential of the string balanced with the mass m, and the horizontal component tangential provide the centripetal force for circular motion.

You can uncheck it and change the period \(T=\frac{2\pi}{\dot{\phi}}\) ,

and you will find out the z-coordinate of the pendulum will change with time when

\(\omega\neq 0\) or \(\dot{\phi}\neq \sqrt{\frac{g}{L\cos\theta}}\)

You can also drag the blue dot to change the length of the pendulum.

Pendulum 3D
 

Translations

Code Language Translator Run

Credits

Fu-Kwun Hwang - Dept. of Physics, National Taiwan Normal Univ.; lookang; tina

http://iwant2study.org/lookangejss/02_newtonianmechanics_3dynamics/ejss_model_pendulum3D/pendulum3D_Simulation.xhtml

 

Other resources

  1. http://weelookang.blogspot.sg/2015/11/pendulum-3d-model.html
  2. http://iwant2study.org/lookangejss/02_newtonianmechanics_3dynamics/ejs/ejs_users-ntnu-fkh-pendulum3D.jar
  3. http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1191.new#new
  4. http://iwant2study.org/lookangejss/02_newtonianmechanics_3dynamics/ejs/ejs_model_pendulum3D.jar
5 1 1 1 1 1 1 1 1 1 1 Rating 5.00 (2 Votes)