Breadcrumbs

 

 

Download ModelDownload SourceembedLaunch Website ES WebEJS

About

SHM17

1.3 a)    Variation with time of energy in simple harmonic motion


If the variation with time of displacement is as shown, then the energies should be drawn as shown.


recalling Energy formula

KE = ½ m v2

PE =  ½ k x2

in terms of time t,

x = x0 sin(ωt) 

differentiating with t gives

v = v0 cos (ωt)

therefore, KE = ½ m v2= ½ m (v0 cos (ωt))2= ½ m (x02ω2)cos (ωt))2

similarly


PE = ½ k x2= ½ (mω2 )(x0 sin (ωt))2= ½ m (x02ω2 )sin (ωt))2


therefore total energy is a constant value in the absence of energy loss due to drag (resistance)


TE = KE + PE = ½ m (x02ω2 )[cos2(ωt) + sin2(ωt))] = ½ m (x02ω2)



this is how the x vs t looks together of the energy vs t graphs



1.3.1 Summary

the table shows some of the common values
general energy formula SHM energy formula when t = 0 when t = T/4 when t = T/2 when t = 3T/4 when t = T
KE = ½ m v2 ½ m (x02ω2)cos (ωt))2 ½ m (x02ω2) 0 ½ m (x02ω2) 0
½ m (x02ω2)
PE =  ½ k x2 ½ m (x02ω2)cos (ωt))2 0 ½ m (x02ω2) 0 ½ m (x02ω2) 0
TE = KE + PE TE = ½ m (x02ω2) ½ m (x02ω2) ½ m (x02ω2)

½ m (x02ω2)

½ m (x02ω2) ½ m (x02ω2)

1.3.2 Model:

  1. Run Sim
  2. http://iwant2study.org/ospsg/index.php/80
 

Translations

Code Language Translator Run

Credits

This email address is being protected from spambots. You need JavaScript enabled to view it.

http://iwant2study.org/lookangejss/02_newtonianmechanics_8oscillations/ejss_model_SHM17/SHM17_Simulation.xhtml

 Apps

Cover arthttps://play.google.com/store/apps/details?id=com.ionicframework.shm17app307408&hl=en

 

Other resources

https://ggbm.at/pY4Hvugh

 

 

end faq

{accordionfaq faqid=accordion4 faqclass="lightnessfaq defaulticon headerbackground headerborder contentbackground contentborder round5"}

5 1 1 1 1 1 1 1 1 1 1 Rating 5.00 (3 Votes)