Breadcrumbs

 

 
Launch TrackerJS Website

About

Video analysis of tennis ball bouncing forward in projectile motion (Scenario 3).

For Teachers

- scenario65.jpg
- scenario64.jpg
- scenario63.jpg
- scenario62.jpg
- scenario61.jpg
- scenario60.jpg
- scenario59.jpg
- scenario58.jpg
- scenario57.jpg
- scenario56.jpg
- scenario55.jpg
- scenario54.jpg
- scenario53.jpg
- scenario52.jpg
- scenario51.jpg
- scenario50.jpg
- scenario49.jpg
- scenario48.jpg
- scenario47.jpg
- scenario46.jpg
- scenario45.jpg
- scenario44.jpg
- scenario43.jpg
- scenario42.jpg
- scenario41.jpg
- scenario40.jpg
- scenario39.jpg
- scenario38.jpg
- scenario37.jpg
- scenario36.jpg
- scenario35.jpg
- scenario34.jpg
- scenario33.jpg
- scenario32.jpg
- scenario31.jpg
- scenario30.jpg
- scenario29.jpg
- scenario28.jpg
- scenario27.jpg
- scenario26.jpg
- scenario25.jpg
- scenario24.jpg
- scenario23.jpg
- scenario22.jpg
- scenario21.jpg
- scenario20.jpg
- scenario19.jpg
- scenario18.jpg
- scenario17.jpg
- scenario16.jpg
- scenario15.jpg
- scenario14.jpg
- scenario13.jpg
- scenario12.jpg
- scenario11.jpg
- scenario10.jpg
- scenario09.jpg
- scenario08.jpg
- scenario07.jpg
- scenario06.jpg
- scenario05.jpg
- scenario04.jpg
- scenario03.jpg
- Kinematics Video Analysis using Tracker (tutor).pdf
- Kinematics Video Analysis using Tracker (student).pdf

Credits

Author: Thomas Yeu, MJC Physics
Contact: This email address is being protected from spambots. You need JavaScript enabled to view it.

 https://3.bp.blogspot.com/-XKCFPBiKQ7g/WMEaCL7ZayI/AAAAAAAA7QE/7wRhyMkcndQrezMQuMMzpfTSZYey8Vk2gCLcB/s1600/scenario3-frame.gif

Document Brief: Title: "Tracker Scenario 3 Object Bouncing by MJC Thomas Yeu"

This document explores the dynamics of an object bouncing after being dropped from a height, focusing on energy transformations, restitution, and damping effects. Observations and models are used to investigate the factors affecting the motion and behavior of the bouncing object.


Study Guide:

Objective: Analyze the bouncing motion of an object, examining energy conversion, the coefficient of restitution, and how external factors influence its behavior.

Key Concepts:

  1. Energy Transformation:

    • Conversion of potential energy to kinetic energy during free fall and vice versa during the bounce.

  2. Coefficient of Restitution (e):

    • A measure of elasticity, indicating how much kinetic energy is retained after a collision.

  3. Damping:

    • The reduction in bounce height over time due to energy loss through heat, sound, and deformation.

  4. Motion Analysis:

    • Using kinematic equations to describe position, velocity, and acceleration during successive bounces.

Experiment Overview:

  • Setup: An object is dropped onto a hard surface, and its motion is recorded using video analysis tools or sensors.

  • Procedure:

    • Drop the object from a known height and record its bounces.

    • Measure the height of each bounce and calculate the coefficient of restitution.

    • Analyze how material properties and surface type affect the motion.

  • Observation Points:

    • Energy loss between bounces.

    • Patterns in velocity and acceleration.

    • Effects of object and surface material properties.

Questions to Consider:

  1. How does the coefficient of restitution vary with different materials?

  2. What factors contribute to energy loss in the system?

  3. How does damping affect the motion of the bouncing object?

Applications:

  • Understanding energy dissipation in mechanical systems.

  • Designing sports equipment and safety materials.

  • Exploring collision dynamics in physics and engineering.


FAQ:

  1. Why study bouncing objects? Bouncing dynamics illustrate fundamental principles of energy conservation, collision physics, and material behavior.

  2. What is the coefficient of restitution? It is a dimensionless value that quantifies the elasticity of a collision, ranging from 0 (perfectly inelastic) to 1 (perfectly elastic).

  3. What causes damping in a bouncing object? Damping arises from energy loss due to heat, sound production, and material deformation.

  4. How do surface properties affect bouncing? Harder, more elastic surfaces typically result in higher bounce heights, while softer surfaces absorb more energy.

  5. What are practical applications of this study? Insights are used in designing sports balls, vehicle suspensions, shock absorbers, and materials for energy efficiency and impact safety.

 

1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)